The proximal sequence element (PSE) plays a major role in establishing the RNA polymerase specificity of Drosophila U-snRNA genes.
نویسندگان
چکیده
Most small nuclear RNA (snRNA) genes are transcribed by RNA polymerase II, but some (e.g., U6) are transcribed by RNA polymerase III. In vertebrates a TATA box at a fixed distance downstream of the proximal sequence element (PSE) acts as a dominant determinant for recruiting RNA polymerase III to U6 gene promoters. In contrast, vertebrate snRNA genes that contain a PSE but lack a TATA box are transcribed by RNA polymerase II. In plants, transcription of both classes of snRNA genes requires a TATA box in addition to an upstream sequence element (USE), and polymerase specificity is determined by the spacing between these two core promoter elements. In these examples, the PSE (or USE) is interchangeable between the two classes of snRNA genes. Here we report the surprising finding that the Drosophila U1 and U6 PSEs cannot functionally substitute for each other; rather, determination of RNA polymerase specificity is an intrinsic property of the PSE sequence itself. The alteration of two or three base pairs near the 3'-end of the U1 and U6 PSEs was sufficient to switch the RNA polymerase specificity of Drosophila snRNA promoters in vitro. These findings reveal a novel mechanism for achieving RNA polymerase specificity at insect snRNA promoters.
منابع مشابه
Oct-1 and Oct-2 potentiate functional interactions of a transcription factor with the proximal sequence element of small nuclear RNA genes.
The promoters of both RNA polymerase II- and RNA polymerase III-transcribed small nuclear RNA (snRNA) genes contain an essential and highly conserved proximal sequence element (PSE) approximately 55 bp upstream from the transcription start site. In addition, the upstream enhancers of all snRNA genes contain binding sites for octamer-binding transcription factors (Octs), and functional studies h...
متن کاملTargeting TBP to a non-TATA box cis-regulatory element: a TBP-containing complex activates transcription from snRNA promoters through the PSE.
In the human small nuclear RNA (snRNA) promoters, the presence of a TATA box recognized by the TATA box-binding protein (TBP) determines the selection of RNA polymerase III over RNA polymerase II. The RNA polymerase II snRNA promoters are, therefore, good candidates for TBP-independent promoters. We show here, however, that TBP activates transcription from RNA polymerase II snRNA promoters thro...
متن کاملCo-expression of multiple subunits enables recombinant SNAPC assembly and function for transcription by human RNA polymerases II and III.
Human small nuclear (sn) RNA genes are transcribed by either RNA polymerase II or III depending upon the arrangement of their core promoter elements. Regardless of polymerase specificity, these genes share a requirement for a general transcription factor called the snRNA activating protein complex or SNAP(C). This multi-subunit complex recognizes the proximal sequence element (PSE) commonly fou...
متن کاملGenes for Xenopus laevis U3 small nuclear RNA.
Genomic Southern blots showed there are only 14 to 20 copies of U3 snRNA genes per somatic genome in Xenopus laevis, unlike the highly repetitive, tandem arrangement of other snRNA genes in this organism. Sequencing of two U3 snRNA genes from lambda clones of a genomic library revealed striking similarity upstream, but much more divergence downstream. Consensus motifs common to other U snRNA ge...
متن کاملSite-directed mutational analysis of a U4 small nuclear RNA gene proximal sequence element. Localization and identification of functional nucleotides.
The genes that encode the small nuclear RNAs (snRNAs) are unusual RNA polymerase II transcription units in that 5'-flanking DNA sequences more than 50 base pairs upstream of snRNA genes are essential for specifying the transcription initiation site. The relevant cis-acting DNA sequence, termed the proximal sequence element (PSE), is required for both transcription initiation and 3'-end formatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 26 2 شماره
صفحات -
تاریخ انتشار 1998